NBS/NPS Vegetation Mapping Program

Accuracy Assessment Procedures - Final Draft


5.0 Computational Issues
5.1 Definitions of Precision and Accuracy
Precision and accuracy are related and, in a sense, complementary concepts.  Precision can be defined as the degree of conformity among a set of observations to a random variable (Mikhail and Ackerman 1976).  As such, precision is a measure of dispersion of the probability distribution associated with a measurement (repeatability of a measurement).  Accuracy, on the other hand, can be defined as how close an estimate is to its true value.  Ideally, estimates should be both precise and accurate.  In other words, a point estimate (parameter) should be as close as possible to its true value.  At the same time, the degree of variability in the point value, as derived from repeat measurements (sampling), should be small.  However, it is possible to have highly precise estimates that are inaccurate, and highly accurate estimates that are imprecise.  The difference between precision and accuracy lies in the possible presence of systematic effects.  A precise but inaccurate estimate is considered to be affected by systematic error.  

If an estimate is precise, it has a narrow confidence interval.  Since the width of a confidence interval is affected by sample size, it follows that high‑precision estimates require larger sample sizes than low‑precision ones.  Although the degree of precision in an estimate can, to some extent, be determined by sample number, the degree of accuracy in the estimate is determined by comparing the estimate to its expected (required) value through hypothesis testing.  Whether or not the estimate is considered to be affected by systematic effects (i.e., is significantly different from the expected or required value), will again depend on the precision of the estimate.  With a high‑precision estimate, even small deviations from the required value will be considered significant.  With a low‑precision estimate, comparatively large deviations from the expected value will probably be interpreted simply as random effects.  

In terms of accuracy assessment, both the degree of precision and the accuracy of the estimates derived from the sample will determine whether accuracy requirements can be considered to have been met.  Because of the proposed number of samples, the precision of the per‑class estimates for the NPS/NBS Vegetation Mapping data will be quite low.  A low‑precision estimate will be advantageous if accuracy requirements are considered to have been met if the true value is contained within the (comparatively wide) confidence interval.  However, if the accuracy of the estimate is required to be equal to or greater than the required value, a high‑precision (narrow confidence interval) estimate will be preferable, because, with this requirement, the true value must lie at the lower edge of or outside the confidence interval.

5.2 Statistical Methods for Thematic Accuracy

Many of the techniques for measuring uncertainty in mapped classes were developed for remote sensing to provide interpreters with ways to assess the accuracy of remotely sensed land classifications.  In this kind of accuracy assessment, it is common practice to select a sample of locations and to compare the class assigned to each location with some source of higher 

locations and to compare the class assigned to each location with some source of higher accuracy, usually ground truth obtained by direct observation in the field.  The results are then tabulated in the form of an error or misclassification matrix (also referred to as a contingency or confusion matrix), such as the one shown in Table 2 (Congalton and Mead 1983; Congalton, Oderwald, and Mead 1983; Story and Congalton 1986; Rosenfield and Fitzpatrick‑Lins 1986;

and Congalton 1991).

Table 2:  Sample Misclassification Matrix for Five Classes  

	
	Reference data

	Sample data
	A


	B
	C
	D
	E
	Total

	A
	80
	4
	0
	15
	7
	106

	B
	2
	17
	0
	9
	2
	30

	C
	12
	5
	9
	4
	8
	38

	D
	7
	8
	0
	65
	0
	80

	E
	3
	2
	1
	6
	38
	50

	Total
	104
	36
	10
	99
	55
	304


In this table, the columns define the classes in the reference data, and the rows define the classes in the data being evaluated for accuracy.  The values in the cells in the table indicate how well the classified data agree with the reference data.

The diagonal elements of the matrix indicate correct classifications.  Therefore, a crude overall measure of accuracy is the percentage of cases that lie on the diagonal, in this case 209/304, or 68.8%.  In other words, overall accuracy can be expressed as follows:
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Unfortunately, this can be misleading as an index, since a certain number of correct classifications will occur by chance, even in the most uncertain situations.  A preferred index is the Kappa index, which has a maximum of 1 and a minimum of zero, the latter expected under maximum uncertainty.  Kappa is computed as follows (Foody 1992):
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where Pcorrect is the proportion of correctly classified entries and Pchance is the proportion of samples that could be expected to be classified correctly by chance.  Pchance is computed as follows (Foody 1992):
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where Prow(i) is the proportion of total entries that are in row i, Pcolumn (i) is the proportion of all entries that are in column i, and n is the total number of rows or columns.

For Table 2, the Kappa index is 58.3%, which is somewhat lower than the percent correctly classified.  Some evidence exists that the Kappa index in fact underestimates true accuracy in the data, and modifications to account for this exist (Foody 1992).  However, it is recommended that the unmodified Kappa index be utilized to report overall classification accuracy for the NPS/NBS Vegetation Mapping Project, primarily because it is documented and well known within the vegetation mapping community.

An overall statement of accuracy is useful, but it does not say anything about the accuracy of individual classes.  Per‑class accuracies can be extracted from the contingency matrix, but they can be misleading if they have not been differentiated into producers' and users' accuracy (also referred to as errors of omission and errors of commission).  Errors of omission calculate the probability that a reference sample has been classified correctly; this is often the only type of accuracy that is reported.  This quantity is computed by dividing the number of samples that have been classified correctly by the total number of reference samples in that class.  Errors of commission calculate the probability that a sample from the classified data actually represents that category on the ground.  This type of error is computed by dividing the number of correctly classified samples by the total number of samples that were classified as belonging to that category.  The users' and producers' accuracies for the example in Table 2, above, are summarized in Table 3.

Table 3:  Users' and Producers' Accuracy for Five Classes

	Class
	Users' accuracy
	Producers' accuracy

	A
	
75.5% 
(80/106)
	
76.9% 
(80/104)

	B
	
56.7% 
(17/30)
	
47.2% 
(17/36)

	C
	
23.7%
(9/38)
	
90.0% 
(9/10)

	D
	
81.2% 
(65/80)
	
65.7% 
(65/99)

	E
	
76.0% 
(38/50)
	
69.1% 
(38/55)


Producers' accuracy is an important measure because the producers of spatial data are interested in how well a particular area on the Earth's surface can be mapped.  Users' accuracy, on the other hand, is important for users of spatial data, because users are principally interested in knowing how well spatial data actually represent what can be found on the ground (Story and Congalton 1986).  Ideally, both users' and producers' accuracy should be similar for all classes.  However, as illustrated in Table 3, users' and producers' accuracy may differ considerably among classes.  For example, Class C has a producers' accuracy of 90%, meaning that 90% of the reference samples were also found to be classified as Class C.  Users' accuracy, on the other hand, is only 23%.  This means that only 23% of the polygons classified as Class C in the data can be expected to be Class C when visited on the ground.  Only reporting the producers' accuracy as part of the accuracy assessment would give a completely misleading picture of data accuracy to users, who would interpret the 90% figure to mean that 90% of the polygons classified as class C in the data also have this class on the ground.  

Ideally, accuracy requirements for classification should address both users' and producers' accuracy, and it is recommended that thematic accuracy always be reported in terms of users' and producers' accuracy in order to give as complete a description of the error properties of individual classes as possible for both the users and the producers of spatial data.  The accuracy standard envisioned for the NPS/NBS Vegetation Mapping Project is an 80% per‑class accuracy for all thematic classes, and this implies a users' and producers' accuracy of 80%.  However, depending on the degree of confusion that occurs between classes, meeting this requirement for both users' and producers' accuracy may not always be possible.  In addition, it may be difficult to obtain an adequate number of samples in the case of rare classes.  Furthermore, the accuracy of a classification is confounded by the classification scheme itself.  If two classes are difficult to differentiate, it might seem reasonable to expect large numbers of cases in the appropriate off‑diagonal cells of the misclassification matrix.  For example, one might conclude from Table 2 that Class D is easily confused with Class A, since 15 of the 99 objects of Class D were wrongly classified as A.  If A and D are lumped together, forming the misclassification matrix shown in Table 4, the percentage of samples classified correctly rises to 76.0%, indicating a higher accuracy because of the simpler classification scheme.  The Kappa index, on the other hand, drops from 58.3% to 56.0%, since chance agreement is now easier to achieve.

Table 4:  Aggregation of two easily confused classes from Table 2

	
	Reference data

	Sample data
	A + D
	B
	C
	E
	Total

	A + D
	167
	12
	0
	7
	186

	B
	11
	17
	0
	2
	30

	C
	16
	 5
	9
	8
	38

	E
	9
	2
	1
	38
	50

	Total
	203
	36
	10
	55
	304


Because misclassifications must be estimated from a single set of samples, it is common to calculate one misclassification matrix for an entire data set.  But in reality, the chances of misclassification vary not only by class, but also across the map, because misclassification errors are almost certainly more likely in some areas than others.  As more is learned about the nature of errors, and why errors occur, it will be possible to produce more refined models of error calculation that take such spatial heterogeneity into account.

With a misclassification matrix, or similar estimate of the probabilities that a feature belongs to each class, it is possible to simulate error using Monte Carlo simulation, and to propagate error into products obtained from the data set.  Goodchild, Sun, and Yang (1992) demonstrate this with a soil map example.

5.3 Statistical Methods for Positional Accuracy
Positional accuracy is best discussed within the framework of measurement.  Position can be thought of as a combination of two measurements, x and y, representing the easting and northing of a pair of UTM coordinates, or longitude and latitude, respectively.  Each measurement is subject to error.  For example, if 100 people were asked to measure the coordinates of a road intersection on a topographic map, the results would show variation in both coordinates.  In practice, the variation in both coordinates is likely to follow a normal distribution or bell curve, with most measurements clustered, and a few extremes in both positive and negative directions.  The amount of variation is likely to be similar in both coordinate directions.  Moreover, errors are likely to be uncorrelated, in the sense that the direction and amount of error in one coordinate is independent of the direction and amount of error in the other.  Errors are also likely to be unbiased, in the sense that the average of all 100 measurements will be very close to the true location.  If these assumptions are true, and there is no obvious reason why they should not be, the errors in both coordinates can be visualized as a three‑dimensional bell curve, or circular normal distribution.

Several statistics of the circular normal distribution are in common use to describe positional accuracy.  Perhaps the most commonly used is the Circular Map Accuracy Standard, or CMAS, defined as the 90th percentile of the circular normal distribution, or 2.146 times its standard deviation.  More graphically, it forms a circle about the true location of the point, within which the observed location is expected to lie 90% of the time.  Using the example of the topographic map, it might turn out that 90% of the 100 people determined the road intersection's coordinates to within 0.5 millimeter of their true locations at the scale of the map, leaving 10 people with positional errors of more than 0.5 millimeter.

CMAS is a well‑defined statistic, and it forms the basis of the current National Map Accuracy Standard for positional accuracy (Bureau of the Budget 1947).  However, map accuracy standards are currently being revised, and the standard is likely to become the National Cartographic Standards for Spatial Accuracy, as proposed by the American Society for Photogrammetry and Remote Sensing (ASPRS).  With this standard, positional accuracy is reported as a standard error in each coordinate direction; it is a measure of variability that includes the effects of both bias and random error.  It is computed as follows (Merchant 1985):
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where RMSEx is the standard error in the x‑coordinate direction, N is the sample size, δXi is the actual (measured) coordinate location, and δXc is the true coordinate location as determined in the source of higher accuracy.
Using standard errors to report positional accuracy is not in conflict with the CMAS, because standard errors can be related to CMAS, provided that the assumption that errors follow circular normal distributions holds.  Since it is common practice to state positional errors at a 90% confidence level, it is recommended that both the standard error in each coordinate direction, and the circular error derived from these errors, be reported.  The relationship between standard error and circular error is as follows (ASPRS 1989):



[image: image5.wmf]s

s

y

x

* 

 

2.146

 

=

 

CMAS

 

or

 

;

* 

 

2.146

 

=

 

CMAS


5
where σx and σy are the standard errors in each coordinate direction.

CMAS and circular errors are useful measures when positional accuracy is assessed from a sample of points.  For general purposes, however, it is necessary to use a less rigorous approach.  Unless otherwise specified in this section of the report, the term "positional accuracy" should be interpreted as a linear measure approximately equal to the CMAS, and based on the same assumptions, but not implying the same rigor of definition.

CMAS can also be used to describe the positional accuracy of points relative to each other.  The accuracy with which two points can be positioned relative to each other depends on the positional accuracy of both.  If it is possible to assume that errors in the two points are independent, a simple calculation can be used to determine the error in relative position by taking the square root of the sum of the squares of the two positional accuracies.  For example, if one point has a positional accuracy of 1 millimeter and a second point has a positional accuracy of 2 millimeters, a rough estimate of the error in their relative positions is:

(12 + 22)1/2 = 2.24 millimeter

or 54 meters on the ground for a 1:24,000 product.

5.4 Confidence Intervals and Sample Size
Since accuracy estimates are based on samples, a point estimate (e.g., of a mean or variance) requires an associated confidence interval to be truly useful.  A confidence interval is an interval within which we have a specific level of confidence the true value of an estimate lies.  The width of a confidence interval is affected by the sample size used to derive the point estimate, and by the confidence level itself.  Larger sample sizes will result in a more narrow confidence interval, as will lower confidence levels.  Smaller sample sizes and higher confidence levels will widen the confidence interval.  Confidence levels are often held fixed for a given study (i.e., all values are reported to a predetermined level of confidence), where conventionally used confidence levels are 90%, 95%, or 99%.  Therefore, the width of the confidence interval will vary with changing sample size.  If, as is recommended for the NPS/NBS Vegetation Mapping Project, sample size varies with class abundance, confidence intervals for rare classes will be wider than those for abundant classes.  An alternative approach would be to hold the width of the confidence interval at a fixed level.  With a given fixed confidence interval, our certainty (confidence level) that the true value of the estimate falls within the interval would decrease for a smaller sample size.  Rather than report that an estimate falls within a variable‑width interval with a fixed certainty, it is considered preferable to report that an estimate falls within a fixed interval with varying certainty based on the sample size used to derive the estimate.

Confidence intervals may be two‑sided or one‑sided (also referred to as two‑tailed or one‑tailed).  Two‑sided confidence limits for an estimate express the probability that a point estimate falls within the interval.  One‑sided limits express the probability that the true value of the estimate lies outside the limit of the interval at one specified end.  For accuracy assessment purposes, investigators are typically interested in either a two‑sided estimate or a one‑sided estimate that expresses whether or not true value is at least equal to or exceeds the estimated value.

The confidence interval for a binomial distribution is obtained from the following equation (Snedecor and Cochran 1967, p. 211):
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where zα comes from a table of the z‑distribution at the significance level a  (this value is 1.645 for a two‑sided limit, and 1.282 for a one‑sided limit with a 90% confidence interval.  For a 95% significance level, the value changes to 1.645 for a one‑sided limit and 1.960 for a two‑sided limit),  is the accuracy estimate, and n is the sample size.  The term 1/(2n) is the correction for continuity.  The correction should be applied to account for the fact the binomial distribution describes discrete populations.  For large sample sizes, the correction will become very small, as should be expected, because for large populations, the normal distribution is a good approximation of the binomial one.

Table 5 below shows the appropriate z‑values and two‑tailed and one‑tailed confidence limits for the recommended sample sizes of 5, 20, and 30.

Table 5:  Confidence Intervals for Given Sample Sizes and Confidence Levels

	
	One‑sided
	Two‑sided

	
	z‑value
	Confidence interval 
	z‑value
	Confidence interval

	Sample size
	90%
	95% 
	90%
	95%
	90%
	95%
	90%
	95%

	5
	1.282
	1.645
	0.33
	0.39
	1.645
	1.960
	0.39
	0.45

	20
	1.282
	1.645
	0.14
	0.17
	1.645
	1.960
	0.17
	0.20

	30
	1.282
	1.645
	0.11
	0.14
	1.645
	1.960
	0.14
	0.16


The confidence intervals above can be converted from proportions to percentages by multiplying each proportion by 100.  For the 90% confidence level, confidence intervals (in percent) are between 33% and 39% for the smallest sample size and decrease to between 11% and 14% for a sample size of 30.  If an 80% accuracy estimate is assumed for a given class, a two‑sided interpretation of the confidence interval with a sample size of 20 and a confidence level of 90% implies that with 90% certainty, the true accuracy value lies between 80% ± 17%.  With a one‑sided interpretation, it can be concluded that with 90% certainty, the estimated value is equal to or greater than 66% (80%–14%).  

Confirming whether or not the estimate conforms to a previously established accuracy requirement is solved through hypothesis testing, which is further explained in the section below.

5.5 Hypothesis Testing
The purpose of hypothesis testing is to determine whether an estimation function supports the assumption (hypothesis) that a sample has been drawn from a population with specified parameter values, such as a normal distribution with a given standard deviation (Mikhail and Ackerman 1976).  Therefore, a statistical hypothesis is a statement about the probability distribution of a random variable.  In general, any statistical test requires the formulation of a null hypothesis (H0) (theoretical expectation of a random variable) and an alternative hypothesis (HA).  The null hypothesis always specifies the set of theoretical distribution parameters of a random variable against which the parameters estimated from the sample are to be compared.  The outcome of this comparison determines whether the sample parameters are in sufficient agreement with the null hypothesis.  If this is the case, one concludes that there is sufficient evidence to accept the null hypothesis as true.  Otherwise, the null hypothesis is rejected as false and the alternative hypothesis accepted as true.  

In terms of accuracy assessment for the NPS/NBS Vegetation Mapping Project, two parameters are of interest:  

1.
The estimate obtained for positional accuracy.  Here, the objective is to determine whether or not the estimate is equal to or exceeds National Map Accuracy Standards.

2.
The estimates obtained for thematic accuracy, both overall and on a per‑class basis.  Here the objective is to determine whether or not the estimate exceeds 80%.

5.5.1 Determining conformance to NMAS for positional accuracy

It is assumed that the National Cartographic Standards for Spatial Accuracy will become the new national map accuracy standards, and conformance to NMAS requires that 1:24,000 products have a standard error of no more than 6.0 meters for Class 1 products (12.0 meters for Class 2 products).  In order to determine whether the estimated standard error in either the x‑ or y‑ coordinate direction meets this accuracy requirement, the null hypothesis and alternative hypothesis are formulated as follows:

H0:
The theoretical (required) standard error and the estimated standard error for a given coordinate direction are the same.  Under these conditions, the random variable defined below:
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7
follows a χ2 distribution with n‑1 degrees of freedom.  σx is the required accuracy standard, and RMSEx is the estimated standard error.

HA:
The estimated standard error is different from the required standard error.  

The data are accepted as meeting the accuracy requirement (i.e., H0 is accepted) if the following is true:
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or, if the computed χ2 test statistic is less than or equal to the theoretical χ2 statistic at confidence level a with n‑1 degrees of freedom.  For a 95% confidence level (5% significance level) and a sample size of 30 points, the maximum value the computed χ2 statistic may assume is 42.557.

5.5.2 Determining conformance to an 80% accuracy requirement for thematic_accuracy

The way in which hypothesis tests are applied to thematic data depends on the way accuracy is defined.  Three approaches are possible (Goodchild et al. 1994):

1.
The hypothesis that 80% accuracy has been met will be accepted unless the sample map 
accuracy is low enough so that the conclusion that rejection is appropriate can be drawn 
with some predetermined degree of certainty.

2.
The hypothesis that 80% accuracy has been met will be rejected unless the sample accuracy is sufficiently high so that the existence of 80% accuracy can be confirmed with some degree of certainty.

3.
A given sample map is assessed for accuracy, and the probability is that the actual map accuracy exceeds the standard of 80%.  This approach is not really different from (1) and (2); it simply rephrases the question of accuracy in probabilistic terms.

The first two approaches toward hypothesis testing can best be illustrated by example.  Suppose classification accuracy for a specific class has been estimated from a sample of 20 points, 15 of which (75%) have been properly identified.  With the first approach, the aim of the hypothesis test is to determine whether or not 75% is sufficiently low to consider it to be significantly different from the required accuracy of 80%.  Whether or not 75% is sufficiently low depends on the required level of confidence for the estimate.  Since the objective is to determine whether or not the estimate is sufficiently different from the required one, a two‑sided confidence limit is in order.  Table 5 above indicates that the two‑sided 90% confidence interval for a sample size of 20 points is 15.88 and therefore ranges from 59.12% to 90.88%.  Since the required map accuracy lies within this interval, it can be concluded that the claimed and estimated accuracy are the same.  Therefore, the estimated classification accuracy meets requirements.

In formal terms, the null and alternative hypotheses would be formulated as follows:

Required level of confidence:   90%

Sample size:
20

Estimated accuracy:
75%

Required accuracy:
80%

Confidence interval:
75% ± 15.88

H0:
The estimated accuracy and the claimed accuracy are the same.  Under these conditions, the random variable comparing the estimated and claimed accuracy,
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will follow a t‑ distribution with n‑1 degrees of freedom.  In the equation, n is the sample size, p is the required accuracy, and eq \O(p, )  is the 
estimated accuracy.

HA:
The estimated and claimed accuracies are different.

If the calculated value for t exceeds the threshold of 1.72 set for a two‑tailed hypothesis test at a 90% confidence level, the null hypothesis should be rejected.  Otherwise, the null hypothesis should be accepted.  For the given example, t is calculated as 1.123.  The claimed and estimated values should therefore be accepted as the same.  

With this approach to hypothesis testing, it is relatively easy to meet accuracy requirements, especially with small sample sizes (and correspondingly wide confidence intervals), because the sample map accuracy must be low before the assertion of 80% accuracy can be rejected.  This approach encourages the use of small sample sizes (Goodchild et al. 1994).  To limit the width of the confidence interval, a low level of significance should be chosen (0.10 or larger), in order to limit the acceptable error in the sample.

A much stricter interpretation of accuracy is the requirement that the required classification accuracy be met or exceeded at a given level of confidence.  This approach is also best illustrated by example.  Suppose that classification accuracy for a given class has been estimated at 90% with a sample size of 20.  We wish to test the hypothesis that the 90% accuracy estimate meets or exceeds the required 80%.  In formal terms

Required level of confidence:    90%

Sample size:
20

Estimated accuracy:
90%

Required accuracy:
80% or greater

Confidence interval:
90% ± 12.2%

H0:
The estimated accuracy is less than the required accuracy.

HA:
The estimated accuracy is equal to or greater than the required accuracy.

If the calculated value for t exceeds the 90% threshold (1.32) for this one‑sided test, the null hypothesis should be rejected, and the alternative accepted.  However, the t‑statistic under these conditions is 1.118.  Therefore, the alternative cannot be accepted.  Even though the estimated accuracy value was considerably higher, the width of the confidence interval prevents a conclusion with sufficient certainty that the estimated value meets or exceeds the required one.  Clearly this approach favors large sample sizes, in order to narrow confidence intervals (and therefore increase the chance that a given point estimate lies above the threshold established by the upper limit of the confidence interval).  For example, with a sample size of 30, the t‑statistic increases to 1.34.  This exceeds the threshold of 1.32 at a 90% confidence level and would therefore permit the alternative hypothesis to be accepted.  Again it is recommended that a low significance level (90% or lower) be used, because this will make it easier to achieve the required accuracy standard.

5.6 Summary of Recommendations Regarding Confidence Levels and Hypothesis Tests

Meeting accuracy requirements at the second, more demanding level will require that the point estimate be much higher than the required accuracy, especially if sample sizes are small.  At the same time, it is unlikely that sample sizes on a per‑class basis can be increased much beyond 30_samples per class, even for the most abundant classes.  In fact, it is strongly recommended that sample sizes of less than 30 be used for rare classes.  Since the majority of classes are in fact expected to be rare, sample sizes of 20 or less will be the more common scenario.  With these sample sizes, meeting or exceeding the required accuracy will be nearly impossible.  On a per‑class basis, it is therefore recommended that the less stringent approach be used to confirm accuracy.  In other words, the accuracy requirement will be considered met, if it can be concluded with sufficient certainty that the sample accuracy and the required accuracy are in fact the same (two‑sided approach).  In addition, it is recommended that 90% confidence intervals be computed on a per‑class basis.

Although sample sizes on a per‑class basis are small, it is likely that overall sample size for thematic accuracy assessment will be sufficiently large to draw more rigorous conclusions regarding overall classification accuracy.  It is therefore recommended that conditions be defined for meeting overall accuracy by using the more demanding requirement of either meeting or exceeding the established accuracy standard.  Again it is recommended that 90% be used as the required level of confidence.
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